Search
Search
CloseClose
Search
Menu
Upcoming Event:
Welcome to our new website! Discover our latest features and improved design. Same precision. Enhanced experience.
Robotic machine moving parts into trays
ARTICLE

MIM Series Part 1

2 mins

Metal injection molding offers a unique combination of metal strength and durability with the design flexibility of injection molding. At OptiMIM, two different types of metal injection molding are available – standard and multi-slide. Both offer similar advantages, such as creating complex geometries, combining multiple parts, enhancing features, dramatically reducing cycle times, and obtaining greater precision and consistency. More details about each type will be shared in a future blog post. For now, let's discuss the steps in the MIM process.

Metal Injection Molding Process

The metal injection molding process involves four steps: compounding, molding, debinding, and sintering. These four steps, along with feedstock, will be the focus of the next five parts of this blog series. Here is a brief overview of each process.

Feedstock/Compounding

MIM utilizes metal powders combined with a plastic and wax binder, known as feedstock, as the foundation for creating parts. By mixing feedstock in-house, a wide range of metals can be offered, including NiFe, 316SS, 420SS, 17-4SS, titanium, and copper. Pre-alloyed metal powders are also available. Once mixed, the feedstock is processed through a twin-screw extruder and pelletized.

Molding

The pellets are loaded into either a standard MIM machine or a proprietary multi-slide MIM machine. At this point, the component is called a "green part". The final part will have the same geometry as the green part but will be about 20% smaller. 

Debinding

In this step, some of the binder from the feedstock is removed. Heat, chemicals, or a combination of both are used to remove the binders and prepare the part for sintering. Once the binder is removed, the part is referred to as a "brown part".

Sintering

The brown part is placed into a continuous or batch vacuum furnace and subjected to temperatures near the material's melting point. This removes the remaining binder and densifies the part, resulting in the 20% shrinkage mentioned earlier. Sintering takes approximately 15-20 hours.

Part Two of this series will focus exclusively on the feedstock aspect of the MIM process. To answer any questions or for further discussion, contact our engineering team today!

Other articles in the series:

Related Resources
Metal Injection Molding FAQ
Get answers to common questions about MIM processes, tolerances, materials, and cost advantages in OptiMIM’s metal injection molding FAQ resource.
Read the Article
Comparing Metal Injection Molding & Powdered Metallurgy
Examine the key differences between MIM and powdered metal processes, including design capabilities, material properties, and cost efficiency.
Read the Article
Food Grade Stainless Steel
Learn how OptiMIM’s MIM processes support the use of FDA-compliant stainless steels for safe, durable, and corrosion-resistant components."
Read the Article

Interested in starting your MIM journey?

Our engineers are here to answer your questions and show you how innovative investment casting technologies can revolutionize your next project and beyond.

Contact Us
©2024 Optimim. All rights reserved
Optimim is part of a larger family of metal manufacturing companies:
Form TechnologiesDynacastSignicast